
Journal of Statistical Physics, Vol. 96, Nos. 3�4, 1999

Conservation of Energy, Entropy Identity, and Local
Stability for the Spatially Homogeneous Boltzmann
Equation

Xuguang Lu1
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For nonsoft potential collision kernels with angular cutoff, we prove that under
the initial condition f0(v)(1+|v| 2+|log f0(v)| ) # L1(R3), the classical formal
entropy identity holds for all nonnegative solutions of the spatially homoge-
neous Boltzmann equation in the class L�([0, �); L1

2(R3)) & C1([0, �);
L1(R3)) [where L1

s(R3)=[ f | f (v)(1+|v| 2)s�2 # L1(R3)]], and in this class, the
nonincrease of energy always implies the conservation of energy and therefore
the solutions obtained all conserve energy. Moreover, for hard potentials and
the hard-sphere model, a local stability result for conservative solutions (i.e.,
satisfying the conservation of mass, momentum, and energy) is obtained. As an
application of the local stability, a sufficient and necessary condition on the
initial data f0 such that the conservative solutions f belong to L1

loc([0, �);
L1

2+;(R3)) is also given.

KEY WORDS: Boltzmann equation; conservation of energy; entropy iden-
tity; local stability.

1. INTRODUCTION

In this paper we study some fundamental properties of solutions of the spa-
tially homogeneous Boltzmann equation

�
�t

f (v, t)=Q( f, f )(v, t), (v, t) # R3_(0, �) (1.1)
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which describes the time evolution of the velocity distribution f of a
spatially homogeneous dilute gas of particles. In equation (1.1), Q is the
collision operator acting on functions of velocity v:

Q( f, f )(v)=||
R3_S2

B(v&v
*

, |)[ f (v$) f (v$
*

)& f (v) f (v
*

)] d| dv
*

(in (1.1) Q( f, f )(v, t) means Q( f ( } , t), f ( } , t))(v)) which describes the rate
of change of f due to a binary collision. Here v, v

*
are the velocities of two

particles before they collide, and v$, v$
*

are their velocities after the collision.
Let us first recall some basic facts about equation (1.1) which are also used
later. According to the conservation laws of momentum and kinetic energy,
v$, v$

*
and v, v

*
have the relations: v$+v$

*
=v+v

*
, |v$|2+|v$

*
| 2=|v|2+

|v
*

|2 which are equivalent to the explicit representation:

v$=v&(v&v
*

, |) |, v$
*

=v
*

+(v&v
*

, |) |, | # S2 (1.2)

where ( } , } ) is the inner product in R3, |v| 2=(v, v) and S2=[| # R3 |
|||=1]. The collision kernel B(z, |) is a nonnegative Borel function of |z|
and |(z, |) | only. For the interaction potentials of inverse power laws,
B(z, |) takes the form (see, e.g., refs. 6 and 18):

B(z, |)=b(%) |z| ;, %=arccos( |z|&1 |(z, |) | ), &1<;�1 (1.3)

The exponent ; is related to the potentials of interacting particles, namely,
the soft potentials (&1<;<0), the Maxwell model (;=0), the hard
potentials (0<;<1) and the hard sphere model (;=1, b(%)=const._
cos(%)). Kernels with nonsoft potentials satisfy the following form:

B(z, |)�b(%)(1+|z| ;), %=arccos( |z|&1| (z, |) | ), 0�;�1

(1.4)

The nonnegative function b(%) is often assumed to satisfy the angular cutoff
condition:

0<A0 :=4? |
?�2

0
b(%) sin(%) d%<� (1.5)

so that the collision operator can be written as the difference of the gain
operator Q+ and the loss operator Q&: Q( f, f )=Q+( f, f )&Q&( f, f ),
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Q+( f, f )(v)=||
R 3_S 2

B(v&v
*

, |) f (v$) f (v$
*

) d| dv
*

,

Q&( f, f )(v)= f (v) |
R 3 _|S2

B(v&v
*

, |) d|& f (v
*

) dv
*

Solutions (as the velocity distribution functions) of the initial-value
problem for (1.1) should be nonnegative on R3_[0, �). Their initial data
f | t=0= f0 are usually assumed to satisfy the conditions:

f0�0, 0<|
R 3

f0(v)(1+|v| 2+|log f0(v)| ) dv<� (1.6)

i.e., such that the mass and energy are finite and the entropy can be defined
initially. The rigorous treatment for the solutions of (1.1) are usually estab-
lished in function classes (for instance) L�([0, �); L1

s(R3)) & C 1([0, �);
L1(R3)) where s�0 and L1

s (R3) are defined by

f # L1
s(R3) � & f &L s

1 :=|
R3

| f (v)|(1+|v|2)s�2 dv<�

In such classes, the initial-value problem for equation (1.1) is written (see,
e.g., ref. 12)

d
dt

f ( } , t)=Q( f, f )( } , t) in L1(R3), t # [0, �); f | t=0= f0 (1.7)

The derivative in (1.7) is of course defined with the norm & }&L1 . Here as
usual we do not distinguish between f (v, t) and its modifications on v-null
sets. That is, in the class C([0, �); L1(R3)), f =g means & f ( } , t)&
g( } , t)&L 1#0 on [0, �). In this sense, every function f # C([0, �); L1(R3))
is a measurable function on R3_[0, �). For the nonnegative solutions of
(1.7), the most interesting class is L�([0, �); L1

2(R3)) & C1([0, �);
L1(R3)) (i.e., s=2) because in this class the mass and energy are bounded
in time. It can be shown that if the collision kernel B(z, |) satisfies (1.4)
and (1.5), then the nonnegative solution f # L�([0, �); L1

2(R3)) &
C1([0, �); L1(R3)) of equation (1.7) is equivalent to the solution of the
integral equation

f (v, t)= f0(v)+|
t

0
Q( f, f )(v, {) d{, t # [0, �), v # R3"Z (1.8)
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for nonnegative measurable functions f on R3_[0, �) which satisfy

f # L�([0, �); L1
2(R3)) and Q\( f, f )(v, t) # L1

loc([0, �)), \v # R3"Z
(1.9)

where Z is a v-null set independent of t. (See refs. 2, 18, 7 and 12.) There-
fore, throughout this paper, whenever saying that f is a solution of the
Boltzmann equation (1.1), it always means that f is a nonnegative solution
of the equation (1.7), or equivalently, of the equation (1.8) with (1.9).
Moreover, for convenience of the present paper, a solution of the equation
(1.1) in the class L�([0, �); L1

2(R3)) & C1([0, �); L1(R3)) will be called a
conservative solution if it conserves the mass, momentum and energy on the
whole closed interval [0, �) of time.

So far the mathematical results on the spatially homogeneous
Boltzmann equation are rather complete (in comparison with the inhomo-
geneous Boltzmann equation). Here we summarize some results related to
the present paper. Especially we only mention the cases of nonsoft potential
collision kernels (1.3) (0�;�1) and (1.4) with angular cutoff (1.5).

(i) (Arkeryd(1)). Assume that the collision kernel B(z, |) satisfy
(1.4) and (1.5). If f0 satisfies (1.6), then there exists a nonnegative solution
f of the Boltzmann equation (1.1) in the class L�([0, �); L1

2(R3)) &
C1([0, �); L1(R3)) such that f | t=0= f0 and f satisfies the conservation of
mass and momentum:

|
R 3

f (v, t)(1, v) dv=|
R3

f0(v)(1, v) dv, t # [0, �)

and the nonincrease of energy:

|
R 3

f (v, t) |v|2 dv�|
R 3

f0(v) |v| 2 dv, t # [0, �) (1.10)

Moreover, the solution f can be also chosen such that it holds the entropy
inequality (DiPerna and Lions(9)):

H( f )(t)�H( f0)&
1
4 |

t

0
d{ |||

R3_R 3_S 2
B(v&v

*
, |)

_( f $f $
*

& f f
*

) log \ f $f $
*

f f
*
+ d| dv

*
dv
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where

H( f )(t)=|
R 3

f (v, t) log f (v, t) dv, t # [0, �),

f = f (v, } ), f
*

= f (v
*

, } ), f $= f (v$, } ), f $
*

= f (v$
*

, } )

It is obvious that under the cutoff conditions (1.4) and (1.5), every non-
negative solution f of Eq. (1.1) in the class L�([0, �); L1

2(R3)) & C1([0, �);
L1(R3)) always conserves mass and momentum, and for ;=0, f is also a
unique conservative solution.

(ii) Let the kernel B(z, |) be given by (1.3) and (1.5) with 0<;�1.
If in addition to (1.6), the initial datum f0 # L1

s1
(R3) for some s1>2,

then the solution f in part (i) can be chosen with the equality in (1.10)
(i.e., f is a conservative solution) and such that f # L�([0, �); L1

s1
(R3)) &

C1([0, �); L1(R3) (Elmroth(10)), and has the property of moment pro-
duction (Desvillettes(8)): for any t0>0 and any s>s1 , f # L�([t0 , �);
L1

s (R3)) & C1([t0 , �); L1
s(R3)). Moreover, in the same class L�([0, �);

L1
s1

(R3)) & C1([0, �); L1(R3)) (s1>2), the conservative solution f is also
unique (Wennberg(20) and Gustafsson(11)), and, if the function b(%) in (1.5)
is also locally bounded on the open interval (0, ?�2), then for any s�0, the
solution f converges strongly in L1

s(R3) towards the equilibrium as t � �
(Gustafsson(12) and Wennberg(19)).

(iii) (Wennberg(21)). Let the kernel B(z, |) be the same as in part
(ii). Then the solution f in part (i) can be also chosen such that for any
s>2 there exist positive constants a, b such that

|
R 3

f (v, t) |v| s dv�_ b
1&exp(&at)&

s�;

, t>0 (1.11)

Moment estimates like (1.11) are important; some applications of such
estimates have been given by (for instance) Bobylev(3) (see also below).
It should be noted that the estimate (1.11) together with the nonincrease
of energy (1.10) imply the conservation of energy, so that f is actually a
conservative solution. In fact by taking s�3, (1.11) implies that the
energy is conserved on every subinterval [1�n, �): �R3 f (v, t) |v|2 dv=
�R 3 f (v, 1�n) |v|2 dv, t�1�n, n=1, 2,... . Since for almost all v # R3,
t [ f (v, t) is continuous on [0, �), it follows from Fatou's Lemma and the
nonincrease of energy (1.10) that

|
R 3

f (v, 0) |v| 2 dv� lim
n � � |

R 3
f (v, 1�n) |v|2 dv�|

R3
f (v, 0) |v| 2 dv

Therefore the energy is conserved on whole [0, �).
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(iv) (Uniqueness of conservative solutions). Recently, Mischler,
and Wennberg (ref. 15) proved that for the hard potentials (1.3) (0<;�1)
and (1.5), if the initial datum only satisfies 0� f0 # L1

2(R3), i.e., the mass
and energy are finite initially, the conservative solution of the Boltzmann
equation (1.1) still exists and is unique. Their proof of the uniqueness is
based on a moment production property (obtained in their same paper):

& f ( } , t)&L1
2+;

=|
R3

f (v, t)(1+|v| 2) (2+;)�2 dv

�
$(t)

t
with $(t) � 0(t � 0+) (1.12)

and the following Nagumo's uniqueness criterion:
Let u(t) be a nonnegative measurable function on [0, T ] satisfying for

some positive constant *<1,

u(0)=0, sup
0<t�T

u(t)
t

<�, u(t)�* |
t

0

u({)
{

d{ , t # (0, T ]

Then u(t)#0 on [0, T ].
This uniqueness criterion is easily shown: We have sup0<t�T (u(t)�t)

�* sup0<t�T (u(t)�t) which implies u(t)#0 on [0, T ]. In the proof of the
uniqueness (ref. 15), the function u(t) is taken & f ( } , t)& g( } , t)&L 1

2
where f

and g are both conservative solutions of (1.1) with the same initial datum:
f | t=0= g| t=0 .

Our results of the present paper show that for the nonsoft potential
(1.4) and (1.5) and under the only initial condition (1.6), the classical
formal entropy identity (i.e., the formula (2.1) below) does actually hold
for all solutions of the Boltzmann equation (1.1) in the class L�([0, �);
L1

2(R3)) & C1([0, �); L1(R3)); and in this class, the nonincrease of energy
(1.10) always implies the conservation of energy for all solutions (Theorem 1).
Furthermore, it is shown that for hard potentials (1.3) and (1.5) with
0<;�1, a local stability property holds for all conservative solutions
(Theorem 2). As an application of the local stability, we give a sufficient
and necessary condition on the initial data f0 such that the conservative
solutions f belong to L1

loc([0, �); L1
2+;(R3)) (Theorem 3). Detail state-

ments of Theorems 1�3 and the proof about the conservation of energy are
given in Section 2. The proof of the entropy identity is given in Section 3.
In Section 4, we give an important improvement of the Wennberg's
estimate (1.11) (Theorem 4). Then, as an application of the new estimate,
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we prove in Section 5 the local stability of conservative solutions. The
proof of Theorem 3 is given in Section 6.

2. THEOREMS 1�3 AND THE PROOF OF AN ENERGY EQUALITY

Theorem 1. Assume that the collision kernel B(z, |) satisfy (1.4) and
(1.5). Let f0 be an initial datum satisfying (1.6), and let f be any non-
negative solution of the Boltzmann equation (1.1) in the class L�([0, �);
L1

2) & C1([0, �); L1(R3)) with f | t=0= f0 . Then supt�0 �R 3 f (v, t)_
|log f (v, t)| dv<� and for all t # [0, �) we have the entropy identity:

H( f )(t)=H( f0)&
1
4 |

t

0
d{ |||

R3_R 3_S 2
B(v&v

*
, |)

_( f $f $
*

& f f
*

) log \ f $f $
*

f f
*
+ d| dv

*
dv (2.1)

and the nondecrease of energy:

|
R 3

f (v, t) |v|2 dv�|
R 3

f0(v) |v| 2 dv, t # [0, �) (2.2)

More precisely, we have for all t # [0, �)

|
R 3

f (v, t) |v|2 dv=|
R 3

f0(v) |v| 2 dv

+ lim
= � 0+ |

t

0
d{ ||

R 3_R3
K=(v, v

*
) f (v, {) f (v

*
, {) dv

*
dv

(2.3)

where

K=(v, v
*

)=
1
2= |

S2
B(v&v

*
, |) log \1+

=2 |v$|2 |v$
*

| 2

1+=( |v|2+|v
*

| 2)+ d|, =>0

As a consequence, the entropy &H( f )(t) is absolutely continuous on
[0, T ] (\T>0) and for almost all t # (0, �)

&
d
dt

H( f )(t)=
1
4 |||

R3_R3_S 2
B(v&v

*
, |)

_( f $f $
*

& f f
*

) log \ f $f $
*

f f
*
+ d| dv

*
dv
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Furthermore, if the solution f satisfies the nonincrease of energy (1.10),
then the energy is conserved:

|
R 3

f (v, t) |v|2 dv=|
R 3

f0(v) |v| 2 dv, t # [0, �)

Theorem 2. Assume the collision kernel B(z, |) satisfy (1.3) and
(1.5) with 0<;�1. Let f0 satisfy (1.6), and let f be a conservative solution
of the Boltzmann equation (1.1) with f | t=0= f0 . Then there is a con-
tinuous increasing function 8f ( } ) on [0, �) satisfying 8f (0)=0 and
depending only on f, b( } ) and ;, such that for all conservative solutions g
of (1.1),

&g( } , t)& f ( } , t)&L 1
2
�8f (&g0& f0&L1

2
) ect, t # [0, �) (2.4)

where g0= g| t=0 , c is a positive constant depending only on f0 , b( } ) and ;.

Remarks. 1. Under the conditions in Theorem 2, the continuous
increasing function 8f ( } ) can be taken as (see the proof of Theorem 2)

8f (r)=C[r+- r +9f (r)], r # [0, �)

where C is a positive constant depending only on f0 , b( } ) and ;, and 9f ( } )
is defined by

9f (r)= sup
0�t�r

|
|v|>1�- r

f (v, t)(1+|v|2) dv, r>0; 9f (0)=0 (2.5)

2. From our proof of Theorem 2 (in Section 3) one may find that the
moment production property as in (1.12), or even as

& f ( } , t)&L 1
2+;

�C[1+(1�t)1+=], t>0, 0<=<1,

is enough to obtain the local stability result for conservative solutions; the
Nagumo's uniqueness criterion does not work on such stability.

Theorem 3. Assume that the collision kernel B(z, |) satisfy (1.3)
and (1.5) with 0<;�1. Let f0 satisfy (1.6) and let f be a conservative solu-
tion of the equation (1.1) with f | t=0= f0 . Then the following (2.6) and
(2.7) are equivalent:
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|
R3

f0(v) |v|2 log+ |v| dv<� (2.6)

|
T

0
dt |

R 3
f (v, t)(1+|v|2) (2+;)�2 dv<�, \T>0 (2.7)

Our proof for Theorem 1 is divided into two parts. The first part given
below is the proof of the energy equality (2.3), the second part is the proof
of the entropy identity (2.1) given in the next section.

Proof of the Energy Equality (2.3). Consider ,=(v)=(1�=) log(1+= |v|2).
We have for some constant C=>0, ,=(v)�C=(1+|v|2)1�2. Since the solution
0� f # L�([0, �); L1

2(R3)) & C1([0, �); L1(R3)), and, by assumption, the
kernel B satisfies �S 2 B(v&v

*
, |) d|�A0(1+|v&v

*
| ;), it follows that

Q\( f, f )(v, t) ,=(v) # L1(R3_[0, T ]), \T>0. Thus, using the integral
form (1.8) of the Boltzmann equation (1.1), we have

|
R 3

f (v, t) ,=(v) dv=|
R 3

f0(v) ,=(v) dv+|
t

0
d{ |

R3
Q( f, f )(v, {) ,=(v) dv

(2.8)

and

|
R 3

Q( f, f )(v, {) ,=(v) dv=
1
2 |||

R3_R 3_S 2
B(v&v

*
, |) f (v, {) f (v

*
, {)

_[,$=+,$=*
&,=&,=*

] d| dv
*

dv

Next, using |v$|2+|v$
*

| 2=|v|2+|v
*

|2, we have

log \(1+= |v$|2)(1+= |v$
*

|2)
1+=( |v|2+|v

*
|2) +=log \1+

=2 |v$|2 |v$
*

| 2

1+=( |v|2+|v
*

|2)+
and so

,$=+,$=*
&,=&,=*

=
1
=

log \1+
=2 |v$|2 |v$

*
|2

1+=( |v|2+|v
*

|2)+&
1
=

log \1+
=2 |v| 2 |v

*
|2

1+=( |v| 2+|v
*

|2)+
If we define

J=(v, v
*

)=
1
2=

log \1+
=2 |v| 2 |v

*
| 2

1+=( |v|2+|v
*

|2)+ |
S 2

B(v&v
*

, |) d|
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then (2.8) is equivalent to

|
R 3

f (v, t) ,=(v) dv+|
t

0
d{ ||

R 3_R3
J=(v, v

*
) f (v, {) f (v

*
, {) dv

*
dv

=|
R 3

f0(v) ,=(v) dv+|
t

0
d{ ||

R3_R 3
K=(v, v

*
) f (v, {) f (v

*
, {) dv

*
dv
(2.9)

For functions J=(v, v
*

), applying elementary inequality log(1+ y)�- y
( y�0) we have

0�J=(v, v
*

)

�
1
2=

}
= |v| |v

*
|

- 1+=( |v|2+|v
*

|2)
} A0(1+|v&v

*
| ;)

�
1
2

|v| |v
*

| } A0 } 2(1+|v|2) ;�2 (1+|v
*

|2) ;�2

�A0(1+|v|2)(1+|v
*

|2)

Since

(1+|v|2)(1+|v
*

|2) f (v, {) f (v
*

, {) # L1(R3_R3_[0, T ])), \T>0

and J=(v, v
*

) � 0(= � 0+) for all (v, v
*

) # R3_R3, it follows from Lebesgue
dominated convergence theorem that

lim
= � 0+ |

t

0
d{ ||

R 3_R 3
J=(v, v

*
) f (v, {) f (v

*
, {) dv

*
dv=0, \t�0 (2.10)

On the other hand, since ,=(v)�|v| 2 and ,=(v) � |v|2 (= � 0+), it follows
that

lim
= � 0+ |

R3
f (v, t) ,=(v) dv=|

R3
f (v, t) |v|2 dv, \t�0 (2.11)

Therefore the energy equality (2.3) follows from (2.9)�(2.11). K

Remarks. 3. From the proof above one sees that for the energy
equality (2.3), we do not use the condition f0 log f0 # L1(R3), and the
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kernel B(z, |) is only needed to satisfy the following weak angular cutoff
condition:

|
S 2

B(z, |) d|�C(1+|z| ), z # R3, C=constant

4. The limit in (2.3) may be interpreted as an energy production
because we cannot prove that this limit is always zero. That is, we can-
not generally prove that the family of the nonnegative integrands
K=(v, v

*
) f (v, {) f (v

*
, {) can be dominated by a function which belongs to

L1(R3_R3_[0, T ]) (\T>0), so that we could not use the Lebesgue
dominated convergence theorem. In fact, the properties (2.1)�(2.3) in Theo-
rem 1 possess weak stability: Given a sequence [ f n]�

n=1 of nonnegative
solutions of Eq. (1.1) in the class L�([0, �); L1

2(R3)) & C1([0, �);
L1(R3)) satisfying supn�1 supt�0 �R3 f n(v, t)(1+|v|2+|log f n(v, t)| ) dv<�,
here the collision kernel is the same as in Theorem 1. Then following the
weak compactness argument (see ref. 1 or ref. 7), there exist a subsequence
[ f nk ]�

k=1 of [ f n]�
n=1 and a nonnegative function f # L�([0, �);

L1
2(R3)) & C1([0, �); L1(R3)) such that for any t�0, f nk( } , t) converge

weakly in L1(R3) to f ( } , t), and f is a solution of (1.1) with initial datum
f0= f ( } , 0) satisfying (1.6). Thus, by Theorem 1, f holds the entropy iden-
tity (2.1) and the energy equality (2.3) (therefore the non-decrease of
energy (2.2)). But even if all f n conserve their energy, we only get

\t�0, |
R 3

f (v, t) |v|2 dv�lim inf
k � � |

R 3
f nk(v, 0) |v|2 dv

Of course, if for some f� 0 # L1
2(R3), limn � � & f n( } , 0)& f� 0&L 1

2
=0, we must

have f (v, 0)=f� 0(v) a.e. on R3. In this case, f conserves the energy.
Wennberg recently proved that (thanks to his estimate (1.11)) for any
given initial datum f0 satisfying (1.6), there exist many nonnegative solu-
tions f of (1.1) in the class L�([0, �); L1

2(R
3)) & C1([0, �); L1(R3))

which have the same initial datum f ( } , 0)= f0 such that the corresponding
energy t [ �R 3 f (v, t) |v|2 dv are increasing step functions on [0, �), espe-
cially they satisfy

|
R 3

f (v, t) |v|2 dv>|
R3

f (v, 0) |v|2 dv, t>0

This result has been reported at a conference in Vienna, October 1998.
From this result of Wennberg, we see that the restriction in Theorems 2�3
that the solutions conserve the energy (i.e., they are conservative solutions)
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is also a necessary condition for the local stability (including the unique-
ness) and for the equivalence of (2.6) and (2.7). (Note that the condition
(2.7) already implies the conservation of energy.) And from the above non-
uniqueness result we also understand why the conservative solutions
obtained before were all obtained by using suitable sequences of conser-
vative approximate solutions whose initial data converge to the given
initial datum with the norm of the smaller class L1

2(R
3) rather than with

the norm of the class L1(R3) only.

3. ENTROPY IDENTITY

The proof of entropy identity (2.1) is relatively complicated. We first
prove some lemmas. In the following, we denote a 7b=min[a, b], ( y)+=
max[ y, 0].

Lemma 1. Let f, f
*

, f $, f $
*

# [0, �); ,, ,
*

, ,$, ,$
*

# (0, 1], and
n�1. Define

1+
n ( f $, f $

*
, ,$, ,$

*
; f, f

*
, ,, ,

*
)

=_( f $f $
*

& ff
*

) log \( f $ 7 n+,$)( f $
*

7 n+,$
*

)
( f 7 n+,)( f

*
7 n+,

*
) +&

+

(3.1)

1&
n ( f $, f $

*
, ,$, ,$

*
; f, f

*
, ,, ,

*
)

=_&( f $f $
*

& f f
*

) log \( f $ 7 n+,$)( f $
*

7 n+,$
*

)
( f 7 n+,)( f

*
7n+,

*
) +&

+

(3.2)

Then

1+
n ( f $, f $

*
, ,$, ,$

*
; f, f

*
, ,, ,

*
)

�1 ( f $f $
*

, f f
*

)+4( f $+,$)( f $
*

+,$
*

)+4( f +,)( f
*

+,
*

)

+2( f $+ f $
*

)[( f +,) 7 ( f
*

+,
*

)]+2( f +f
*

)[( f $+,$) 7 ( f $
*

+,$
*

)]

(3.3)

1&
n ( f $, f $

*
, ,$, ,$

*
; f, f

*
, ,, ,

*
)

�4( f $+,$)( f $
*

+,$
*

)+4( f +,)( f
*

+,
*

)

+2( f $+ f $
*

)[( f +,) 7 ( f
*

+,
*

)]+2( f +f
*

)[( f $+,$) 7 ( f $
*

+,$
*

)]

(3.4)
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where 1 ( } , } ) is nonnegative, defined by

1 (a, b)={
(a&b) log \a

b+ , a>0, b>0;

(3.5)
+�, a>0, b=0 or a=0, b>0;

0, a=b=0

Proof. By symmetry, we may suppose that

( f $ 7 n+,$)( f $
*

7 n+,$
*

)�( f 7 n+,)( f
*

7 n+,
*

)

We first prove that

R := f f
*

( f $ 7 n+,$)( f $
*

7n+,$
*

)
( f 7 n+,)( f

*
7 n+,

*
)

�( f $+,$)( f $
*

+,$
*

)+4ff
*

+2( f +f
*

)[( f $+,$) 7 ( f $
*

+,$
*

)] (3.6)

The cases of f, f
*

�n and f, f
*

�n are easy since ,$, ,$
*

�1�n. Suppose
f�n� f

*
or f�n� f

*
. Then

R�( f +f
*

)
( f $ 7n+,$)( f $

*
7 n+,$

*
)

n

�2( f +f
*

)[( f $+,$) 7 ( f $
*

+,$
*

)]

Now we prove (3.3) and (3.4). If f $f $
*

� f f
*

, then 1+
n =0 and, using

log y< y ( y>0),

1&
n �( f f

*
& f $f $

*
)

( f $ 7 n+,$)( f $
*

7 n+,$
*

)
( f 7 n+,)( f

*
7 n+,

*
)

�R

If f $f $
*

> f f
*

=0, then 1&
n =0 and 1+

n <�=1 ( f $f $
*

, f f
*

). Finally, if
f $f $

*
> f f

*
>0, then 1&

n =0 and

1+
n =1 ( f $f $

*
, ff

*
)+( f $f $

*
& f f

*
) log \ f f

*
( f $ 7 n+,$)( f $

*
7n+,$

*
)

f $f $
*

( f 7 n+,)( f
*

7 n+,
*

) +
�1 ( f $f $

*
, ff

*
)+R

Therefore (3.3), (3.4) follows from (3.6). K
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Lemma 2. Suppose the collision kernel B(z, |) satisfy (1.4) and
(1.5). Let f, g, and h be nonnegative measurable functions belonging to
L1

;(R3). Then

|||
R 3_R3_S 2

B(v&v
*

, |) f (v) } [ g(v$) 7 h(v$
*

)] d| dv
*

dv

�8A0 & f &L 1
;

(&g&L1
;
+&h&L 1

;
) (3.7)

where A0 is the constant (1.5).

Proof. We need the following properties of a general collision gain
term (ref. 13): Write B(z, |)=B� ( |z|, |z|&1 |(z, |) | ) and let F # C(R3_R3)
be nonnegative. Then

||
R3_S 2

B(v&v
*

, |) F(v$, v$
*

) d| dv
*

=2 |
?�2

0
sin(%) |

R3
B� ( |z|, cos(%))

__|S 1(z)
F(v&cos(%) z, v&sin(%) |z| |) d =|& dz d% (3.8)

and for all % # (0, ?�2), v # R3,

|
R 3

B� ( |z|, cos(%)) _|S 1(z)
F(v&cos(%) z, v&sin(%) |z| |) d =|& dz

=|
R3

B� ( |z|, cos(%)) _|S 1(z)
F(v&cos(%) |z| |, v&sin(%) z) d =|& dz

(3.9)

where for any z # R3"[0], S1(z) :=[| # S2 | |=z], and d =| denotes the
Lebesgue measure on the circle S1(z), i.e.,

|
S 1(z)

.(|) d =|

:=|
2?

0
.(cos(%) i+sin(%) j) d%, . # C(S2); i, j # S1(z), i = j
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Now we prove (3.7). By standard L1-approximation and Fatou's
Lemma with respect to the product measure d|�dv

*
�dv, we may sup-

pose that g, h are also continuous on R3. Let F(v, v
*

)= g(v) 7 h(v
*

). If
% # (0, ?�4], then, by (1.4), the left-hand side of (3.9) is bounded by

b(%) 2? |
R 3

(1+|z| ;) g(v&cos(%) z) dz

�b(%) 8? |
R 3

(1+|z| ;) g(v&z) dz

�b(%) 16?(1+|v|2) ;�2 |
R3

(1+|v
*

|2) ;�2 g(v
*

) dv
*

Similarly, if % # [?�4, ?�2), then the right-hand side of (3.9) is bounded by

b(%) 2? |
R 3

(1+|z| ;) h(v&sin(%) z) dz

�b(%) 16?(1+|v|2) ;�2 |
R3

(1+|v
*

|2) ;�2 h(v
*

) dv
*

Therefore, by (3.8) and (1.5),

||
R 3_S 2

B(v&v
*

, |)[ g(v$) 7 h(v$
*

)] d| dv
*

�8A0(1+|v| 2) ;�2 (&g&L 1
;
+&h&L1

;
)

This yields the estimate (3.7). K

Lemma 3. If f (t) is absolutely continuous on [a, b], G( y) is
Lipschitz continuous on [c, d ] such that f ([a, b])/[c, d ]. Then

G( f (t))=G( f (a))+|
t

a
G1( f ({))

d
d{

f ({) d{, t # [a, b]

where G1( y)=(d�dy) G( y) a.e. on [c, d ].

Proof. See ref. 16, p. 223 Theorem 4.3, p. 263 Theorem 4.9, and note
that by assumption of the lemma the function t [ G( f (t)) is also absolutely
continuous on [a, b]. K
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Proof of Entropy Identity (2.1). The proof of (2.1) requires several
steps. First of all we recall that the nonnegative solution f in Theorem 1 is
arbitrarily given in L�([0, �); L1

2(R3)) & C1([0, �); L1
0(R3)), and the

collision kernel B(z, |) satisfies (1.4) and (1.5). This implies first that the
set

Z=[(v, v
*

, |, t) # R3_R3_S2_[0, �) | f (v, t)

+ f (v
*

, t)+ f (v$, t)+ f (v$
*

, t)=�]

has measure zero with respect to the product measure dv�dv
*

�d|�dt
(or respect to the completion of the measure), and Q\( f, f )(v, t)_
(1+|v|2)1�2 # L1(R3_[0, T ]) (\T>0).

Step 1. Let 8(v)=(1+|v|2)&4, ,n(v)=(1�n) 8(v), n�1. For any
fixed v, n, the function y [ ( y+,n(v)) log( y 7 n+,n(v)) is Lipschitz con-
tinuous on [0, R] (\R>0) and

d
dy

[( y+,n(v)) log( y 7n+,n(v))]

=1+log( y 7n+,n(v))&/[ y>n] , \y # [0, �), y{n

where /[ ] is the characteristic function, for instance /[a>b]=1 if a>b;
/[a>b]=0 if a�b. On the other hand, from the integral form (1.8) of the
Boltzmann equation (1.1), we know that for almost all v # R3, t [ f (v, t) is
absolutely continuous on [0, T ] (\T>0). Thus, using Lemma 3 we have
for almost all v # R3

( f (v, t)+,n(v)) log( f (v, t) 7 n+,n(v))

=( f0(v)+,n(v)) log( f0(v) 7 n+,n(v))

+|
t

0
[1+log( f (v, {) 7 n+,n(v))&/[ f (v, {)>n]]

_Q( f, f )(v, {) d{, t # [0, �) (3.10)

Furthermore we have

|log( f (v, t) 7n+,n(v))|�log(n+1)+4 log(1+|v|2)
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This insures the existence of the following integrals

Hn( f )(t) :=|
R 3

( f (v, t)+,n(v)) log( f (v, t) 7 n+,n(v)) dv

Rn( f )(t) :=|
t

0
d{ |

R 3
Q( f, f )(v, {) /[ f (v, {)>n] dv

2\
n ( f )(t) :=

1
4 |

t

0
d{ |||

R3_R3_S 2
B(v&v

*
, |)

_1\
n ( f $, f $

*
, ,$n , ,$n*

; f, f
*

, ,n , ,n*
) d| dv

*
dv

where 1\
n are defined in (3.1), (3.2) and f

*
= f (v

*
, {), f $= f (v$, {),

f $
*

= f (v$
*

, {), etc. Therefore, taking integration for both sides of (3.10)
over v # R3 and using the identity y=( y)+&(&y)+ leads to

Hn( f )(t)=Hn( f0)&2+
n ( f )(t)+2&

n ( f )(t)&Rn( f )(t) (3.11)

or

2+
n ( f )(t)=Hn( f0)&Hn( f )(t)+2&

n ( f )(t)&Rn( f )(t) (3.12)

Step 2. In order that the limit (with respect to n) can be taken into
the integrands, we need several estimates. First, it is easily shown that

( f (v, t)+,n(v)) |log( f (v, t) 7 n+,n(v))|

� f (v, t)(1+|log f (v, t)| )+48(v)(1+|v|2) (3.13)

Next, let

F(v, v
*

, |, {)=4( f (v, {)+8(v))( f (v
*

, {)+8(v
*

))

+4( f (v$, {)+8(v$))( f (v$
*

, {)+8(v$
*

))

+2( f (v, {)+ f(v
*

, {))[( f (v$, {)+8(v$)) 7 ( f(v$
*

, {)+8(v$
*

))]

+2( f (v$, {)+ f (v$
*

, {))[( f(v, {)+8(v))7 ( f(v
*

, {)+8(v
*

))]

(3.14)

Then, by Lemma 1, we have

1+
n ( f $, f $

*
, ,$n , ,$n*

; f, f
*

, ,n , ,n*
)�1 ( f $f $

*
, f f

*
)+F(v, v

*
, |, {) (3.15)

1&
n ( f $, f $

*
, ,$n , ,$n*

; f, f
*

, ,n , ,n*
)�F(v, v

*
, |, {) (3.16)
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Now, applying Lemma 2 to functions in (3.14), we obtain

|
t

0
d{ |||

R 3_R 3_S2
B(v&v

*
, |) F(v, v

*
, |, {) d| dv

*
dv

=8 |
t

0
d{ |||

R3_R3_S2
B(v&v

*
, |)( f (v, {)+8(v))

_( f (v
*

, {)+8(v
*

)) d| dv
*

dv

+8 |
t

0
d{ |||

R3_R 3_S2
B(v&v

*
, |) f (v, {)

_[( f (v$, {)+8(v$)) 7 ( f (v$
*

, {)+8(v$
*

))] d| dv
*

dv

�16A0 |
t

0
(& f ( } , {)+8&L 1

;
)2 d{

+128A0 |
t

0
& f ( } , {)&L 1

;
& f ( } , {)+8&L 1

;
d{

�144A0(sup
{�0

& f ( } , {)+8&L 1
;
)2 t

:=C1(t)<�, t # [0, �) (3.17)

Further, let

C2(t)=|
t

0
d{ |

R 3
|Q( f, f )(v, {)| dv

Then |Rn( f )(t)|�C2(t)<�, and so by (3.11), (3.16) and (3.17) we have
for all t�0,

|
R 3

( f (v, t)+,n(v)) |log( f (v, t) 7 n+,n(v))| dv

=Hn( f )(t)+2 |
R3

( f (v, t)+,n(v))

_log[( f (v, t)+,n(v))&1] /[ f (v, t)+,n(v)<1] dv
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�Hn( f0)+2&
n ( f )(t)+|Rn( f )(t)|

+2 |
R 3

( f (v, t)+,n(v)) log[( f (v, t)+,n(v))&1] /[ f (v, t)+,n(v)<e&|v|2] dv

+2 |
R 3

( f (v, t)+,n(v)) log[( f (v, t)+,n(v))&1] /[e&|v|2� f (v, t)+,n(v)<1] dv

�|
R 3

[ f0(v)(1+|log f0(v)| )+48(v)(1+|v| 2)] dv+
1
4

C1(t)+C2(t)

+2 |
R 3

e&(1�2) |v| 2 dv+2 |
R3

( f (v, t)+8(v)) |v| 2 dv

:=C3(t)<� (3.18)

Step 3. From (3.18) and Fatou's Lemma we see that f ( } , t)_
log f ( } , t) # L1(R3), \t # [0, �). This, together with (3.13) and dominated
convergence theorem, implies that

lim
n � �

Hn( f )(t)=H( f )(t), t # [0, �) (3.19)

Also, since /[ f (v, {)>n] � 0 (n � �) for a.e. (v, {) # R3_(0, �) and Q( f, f )
# L1(R3_[0, T ])(\T>0), it follows that

lim
n � �

Rn( f )(t)=0, t # [0, �) (3.20)

Next, by definition of 1\
n and 1, it is easily verified that

lim
n � �

1+
n ( f $, f $

*
, ,$n , ,$n*

; f, f
*

, ,n , ,n*
)

=1 ( f $f $
*

, f f
*

) on R3_R3_S2"Z (3.21)

lim
n � �

1&
n ( f $, f $

*
, ,$n , ,$n*

; f, f
*

, ,n , ,n*
)

=0 on R3_R3_S2"Z (3.22)

From (3.16), (3.17) and (3.22) we have

lim
n � �

2&
n ( f )(t)=0, t # [0, �) (3.23)
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Therefore, by (3.12), (3.19), (3.20) and (3.23),

lim
n � �

2+
n ( f )(t)=H( f0)&H( f )(t), t # [0, �) (3.24)

If we define

2( f )(t)=
1
4 |

t

0
d{ |||

R3_R3_S 2
B(v&v

*
, |) 1 ( f $f $

*
, ff

*
) d| dv

*
dv

then by (3.21), (3,24) and Fatou's Lemma, we obtain

2( f )(t)�H( f0)&H( f )(t)<�, \t # [0, �)

This integrability together with the estimates (3.15), (3.17), equalities
(3.21), (3.24) and dominated convergence theorem imply that the equality
2( f )(t)=H( f0)&H( f )(t) holds for all t # [0, �). Equivalently, we obtain
the entropy identity (2.1):

H( f )(t)=H( f0)&2( f )(t), t # [0, �) (3.25)

Finally, from (3.25) one easily shows that supt�0 �R3 f (v, t) |log f (v, t)| dv
<�. This completes the proof. K

The proof above shows that the classical formal entropy identity (2.1)
does actually hold under the conditions in Theorem 1 and therefore it
holds the equality of the entropy production (ref. 4): for almost all
t # (0, �),

&|
R3

Q( f, f ) log f dv

=
1
4 |||

R 3_R3_S2
B(v&v

*
, |)( f $f $

*
& ff

*
) log \ f $f $

*
f f

*
+ d| dv

*
dv

where the left-hand side for general case (as in Theorem 1) can be at least
defined by the right-hand side since the right-hand side is finite for a.e.
t # (0, �). This may be helpful for further investigation on the entropy
production estimates (refs. 4 and 5). Also, it is known that if the collision
kernel is given by (1.3), (1.5) with 0�;�1, then the solution f in Theorem 1
is positive in R3_(0, �). (More precisely, for any t0>0, f is bounded
pointwise from below by a Maxwellian c1 exp(&c2 |v|2) on R3_[t0 , �),
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where c1>0, c2>0 depend only on the mass, energy, H( f0) and t0 . See
ref. 17.) This insures that in the entropy identity, ( f $f $

*
& ff

*
) log[( f $f $

*
)�

( ff
*

)] is meaningful. In the general case of (1.4) (with (1.5)), ( f $f $
*

& f f
*

)
_log[( f $f $

*
)�( f f

*
)] can be at least understood as 1 ( f $f $

*
, ff

*
) (see (3.5))

which was first used in ref. 9 for proving the entropy inequality of inhomo-
geneous solutions.

4. FURTHER ESTIMATE ON THE MOMENT PRODUCTION

Our improvement for the Wennberg's estimate (1.11) is to replace the
exponent s�; by (s&2)�;. We begin by introducing some notations. Let

K(%)=min[(cos(%))2, (1&cos(%))2], % # [0, ?�2] (4.1)

As=4? |
?�2

0
b(%)[K(%)]s�2 sin(%) d%, s�0 (4.2)

C;(x, y, z)=\1
2+

2+;

\ 3
16?+

;�3

_min {x,
x2+;�3

y
exp \&

4;( y+z+(2?)3�2)
3x += (4.3)

where ;>0, (x, y, z) # (0, �)_(0, �)_R, and the positive function
C;(x, y, z) comes from a well known result of Arkeryd (ref. 2, see also
ref. 7) i.e., a lower bound:

inf
(v, t) # R3_[0, �)

(1+|v|2)&;�2 |
R3

f (v
*

, t) |v&v
*

| ; dv
*

�C;(& f0&L 1
0
, & f0&L1

2
, H( f0)) (4.4)

where L1
0=L1 and f # L�([0, �); L1

2(R3)) & C1([0, �); L1(R3)) is a con-
servative solution of (1.1) with the initial datum f0 satisfying (1.6) (there-
fore f holds the entropy identity (2.1)).

Theorem 4. Assume the kernel B(z, |) satisfy (1.3) and (1.5) with
0<;�1. Let f0 satisfy (1.6). Then there exists a conservative solution f of
(1.1) with f | t=0= f0 such that

& f ( } , t)&L s
1�& f0&L 1

2 _ b
1&exp(&at)&

(s&2)�;

, t>0, s�2 (4.5)
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where

a=;A0 & f0&L 1
2
, b=

8sA0 & f0&L 1
2

AsC;(& f0&L1
2
, & f0&L 1

2
, H( f0))

To prove Theorem 4, we first prove a sharpened version of the
Povzner inequality which is also used for proving Theorem 3.

Lemma 4. Let *(v)=1+|v|2, k>1, 0�*�1�2. Then for all
(v, v

*
, |) # R3_R3_S2,

[*(v$)]k+[*(v$
*

)]k&[*(v)]k&[*(v
*

)]k

�2(2k&2)[[*(v)]k&* [*(v
*

)]*+[*(v)]* [*(v
*

)]k&*]

&4&k(k&1)[K(%)]k [*(v)]k (4.6)

&[*(v)+*(v
*

)]

�*(v$) log *(v$)+*(v$
*

) log *(v$
*

)&*(v) log *(v)&*(v
*

) log *(v
*

)

�2[*(v) *(v
*

)]1�2& 1
4K(%) *(v) (4.7)

where %=arccos( |v&v
*

|&1 |(v&v
*

, |) | ). (For v=v
*

, we define %=0.)

Proof. We first prove (4.6). This relies on the following elementary
inequalities:

(1+x)k�1+xk+(2k&2) xk�2, x # [0, 1], 1<k�2; (4.8)

(1+x)k�1+xk+(2k&2) x, x # [0, 1], k�2 (4.9)

(4.8) can be proven by showing that the function x [ (1+x)k x&k�2&
x&k�2&xk�2 is increasing on (0,1]. (4.9) is easy. Now let *=*(v),
*
*

=*(v
*

), *$=*(v$), *$
*

=*(v$
*

), and let Dk=(*$)k+(*$
*

)k&(*)k&(*
*

)k.
By identity *$+*$

*
=*+*

*
, we have

Dk=(*+*
*

)k&(*)k&(*
*

)k&[(*$+*$
*

)k&(*$)k&(*$
*

)k] (4.10)

Using (4.8) and (4.9), we obtain

(*+*
*

)k&(*)k&(*
*

)k�(2k&2) max[(*)k&* (*
*

)*, (*)* (*
*

)k&*]

On the other hand, it is easily shown that

(*$+*$
*

)k&(*$)k&(*$
*

)k�(k&1) min[*$, *$
*

]
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Thus

Dk�(2k&2) max[(*)k&* (*
*

)*, (*)* (*
*

)k&*]&(k&1) min[(*$)k, (*$
*

)k]
(4.11)

This implies first that (4.6) holds for K(%)=0. Now suppose that K(%)>0.
Let

M(%)=max {1+cos(%)
cos(%)

,
cos(%)

1&cos(%)=
If |v|�2M(%) |v

*
|, then, by (1.2),

|v$|�|v|&|v&v
*

| cos(%)�|v| (1&cos(%))&|v
*

| cos(%)� 1
2 (1&cos(%)) |v|

|v$
*

|�|v&v
*

| cos(%)&|v
*

|�|v| cos(%)&|v
*

| (cos(%)+1)� 1
2 cos(%) |v|

These imply *$�(1�4) K(%) * and *$
*

�(1�4) K(%) * so that by (4.11) we
have

Dk�(2k&2) max[(*)k&* (*
*

)*, (*)* (*
*

)k&*]&4&k(k&1)[K(%)]k (*)k

(4.12)

If |v|�2M(%) |v
*

|, then *�(2M(%))2 *
*

. Since 0�*�k�2, K(%) M(%)�
3�4 and k&1�2k&2, this implies that 4&k(k&1)[K(%)]k (*)k�
4&k(2k&2)(3�2)k (*)k&* (*

*
)*. Therefore, using (4.11) again we obtain

Dk�(2k&2)(1+(3�8)k) max[(*)k&* (*
*

)*, (*)* (*
*

)k&*]

&4&k(k&1)[K(%)]k (*)k (4.13)

which gives the inequality (4.6). To prove (4.7), we write Dk as (using
*$+*$

*
=*+*

*
and, by continuity, assume that c>0)

Dk=*$[(*$)k&1&1]+*$
*

[(*$
*

)k&1&1]

&*[(*)k&1&1]&*
*

[(*
*

)k&1&1]

and choose *=1�2. Then, dividing both side of (4.13) by k&1 and letting
k � 1+ leads to the the second inequality in (4.7). The first inequality in
(4.7) is easily derived from the following identity (use *$+*$

*
=*+*

*
):

*$ log *$+*$
*

log *$
*

&* log *&*
*

log *
*

=* log(1+*
*

�*)+*
*

log(1+*�*
*

)&*$ log(1+*$
*

�*$)&*$
*

log(1+*$�*$
*

)
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and from the elementary inequality

*$ log(1+*$
*

�*$)+*$
*

log(1+*$�*$
*

)�*$
*

+*$=*
*

+*

This proves the lemma. K

Proof of Theorem 4. We will use an approximation process. For any
positive integer n, let f n

0(v)= f0(v) exp(&|v|2�n). Following the weak con-
vergence argument together with the Gronwall inequality and the Povzner
inequality, there exists a conservative solution f n of (1.1) such that
f n| t=0= f n

0 and, for all s>2 and all T>0, f n belongs to L�([0, T ];
L1

s (R3)) & C1([0, T ]; L1
s(R3)) (see ref. 1 or ref. 7). Since f n conserves the

mass and energy, and & f n
0&L1

2
�& f0&L 1

2
, we have (by Ho� lder inequality)

[& f n( } , t)&L s
1]1+;�(s&2)�[& f0&L 1

2
] ;�(s&2) & f n( } , t)&L 1

s+;
, t�0, s>2

(4.14)

The following proof follows Wennberg's argument: By Lemma 4 (taking
k=s�2, *=;�2), (4.4) and (4.14) we have

d
dt

& f n( } , t)&L s
1

�as( f0) & f n( } , t)&L s
1&bs( f n

0)[& f n( } , t)&Ls
1]1+;�(s&2), t�0, s>2

where

as( f0)=2(2s�2&2) A0 & f0&L1
2
,

bs( f n
0)=[(s�2)&1] 2&s&1[& f0&L1

2
]&;�(s&2) AsC;(& f n

0&L 1
0
, & f n

0&L 1
2
, H( f n

0))

These imply

& f n( } , t)&L s
1

�_
exp \ ;

s&2
as( f0) t+

[& f n
0&L s

1]&;�(s&2)+
bs( f n

0)
as( f0) _exp \ ;

s&2
as( f0) t+&1&&

(s&2)�;

,

t�0, s>2 (4.15)

On the other hand, the Boltzmann H-theorem (i.e., the entropy inequality)
implies that supn�1 supt�0 �R 3 f n(v, t)(1+|v| 2+|log f n(v, t)| ) dv<�.
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Thus there exists a subsequence [ f nk ]�
k=1 of [ f n]�

n=1 such that for any
t�0, [ f nk( } , t)]�

k=1 converges weakly in L1(R3) to a function f ( } , t), and
f is a conservative solution of (1.1) satisfying f | t=0= f0 since
limn � � & f n

0& f0&L 1
2
=0. Moreover, since f n

0� f0 and C;(x, y, z) is con-
tinuous in the open set (0, �)_(0, �)_R, it follows that

lim
n � �

C;(& f n
0&L 1

0
, & f n

0&L 1
2
, H( f n

0))=C;(& f0&L 1
0
, & f0&L1

2
, H( f0))

and so limn � � bs( f n
0)=bs( f0). Therefore, by (4.15) and the weak conver-

gence, we obtain

& f ( } , t)&L s
1�_ as( f0)

bs( f0)[1&exp(&(;�(s&2)) as( f0) t)]&
(s&2)�;

, t>0, s>2

This implies the estimate (4.5) because (;�(s&2)) as( f0)�;A0 & f0&L 1
2

and

as( f0)
bs( f0)

�[& f0&L 1
2
] ;�(s&2)

8sA0 & f0&L1
2

AsC;(& f0&L 1
0
, & f0&L 1

2
, H( f0))

K

Remark. From the estimates (4.15) of [ f n]�
n=1 , one immediately

obtains a global result of Elmroth: If the initial datum f0 # L1
s(R3) for some

s>2, then the conservative solution f # L�([0, �); L1
s (R3)).

5. LOCAL STABILITY

In this section we prove Theorem 2. It suffices to prove that the con-
servative solution f obtained in Theorem 4 holds the inequality (2.4) for all
conservative solutions g. In fact, this implies the uniqueness of conservative
solutions. We first prove that the non-decreasing function 9f ( } ) defined by
(2.5) is continuous on [0, �). This needs a generalized dominated con-
vergence theorem (see ref. 16, Theorem 3.4):

Lemma 5. Let [Fn]�
n=1 and [Gn]�

n=1 be two sequences in L1(R3)
which converge a.e. to the functions F and G, respectively. Suppose
|Fn|�Gn and

lim
n � � |

R 3
Gn(v) dv=|

R3
G(v) dv<�

Then

lim
n � � |

R3
Fn(v) dv=|

R 3
F(v) dv
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Now we prove that 9f (r) is continuous at r=0. Since 9f (r) is
monotone, it suffices to show that limn � � 9f (1�n)=0. By definition of
9f (r), for any n�1 there exists tn # [0, 1�n] such that

9f \1
n+�|

|v|>- n
f (v, tn)(1+|v|2) dv+

1
n

(5.1)

From the integral form (1.8) of the Boltzmann equation (1.1) we know that
for a.e. v # R3, the function t [ f (v, t) is continuous on [0, �). Thus
limn � � f (v, tn)(1+|v|2) /[ |v|>- n ]=0 and limn � � f (v, tn)(1+|v| 2)=
f0(v)(1+|v|2) hold for a.e. v # R3. Moreover, since f is a conservative solu-
tion, we have �R3 f (v, tn)(1+|v| 2) dv=�R 3 f0(v)(1+|v|2) dv for all n�1.
Thus, by Lemma 5, the right hand side of (5.1) and therefore 9f (1�n) tend
to zero as n � �. Similarly we can prove that 9f (r) is also continuous at
any r>0.

Let

U}(t)=&g( } , t)& f ( } , t)&L 1
}
, t�0, 0�}�2

We prove that there exist constants C and c which depend only on f0 , ;,
and the angular function b( } ), such that for any conservative solution g of
(1.1),

U2(t)�C[U2(0)+- U2(0)+9f (U2(0))] ect, t�0 (5.2)

For convenience, in the following, the same letter C will denote different
such constants. If U2(0)�1, then the conservation of the mass and energy
implies that

U2(t)�&g0&L1
2
+& f0&L 1

2
�(1+2 & f0&L 1

2
) U2(0), t�0 (5.3)

where g0= g| t=0 . Therefore, in the following, we assume that U2(0)<1
(which implies &g0&L 1

2
�1+& f0&L 1

2
and U2(t)�1+2 & f0&L 1

2
for all t�0).

We need three inequalities: For any 0<r�1,

U2(t)�U2(r)+C |
t

r
(1&e&a{)&1 U1({) d{, t�r (5.4)

U2(t)�U2(0)+
4

- r
U1(t)+29f (r), 0�t�r (5.5)

U1(t)�U1(0)+C |
t

0
U2({) d{, t�0 (5.6)
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(5.6) is obvious since 0<;�1. (5.5) follows from the identity | g& f |=
g& f +2( f & g)+ (where ( y)+=max[y, 0]), the conservation of mass and
energy, and the definition (2.5) of 9f ( } ). Also, for (5.4), we have

U2(t)=&g( } , r)&L1
2
&& f ( } , r)&L 1

2
+2 &[ f ( } , t)& g( } , t)]+&L1

2
, t�r (5.7)

Then applying the integral form (1.8) of the equation (1.1), we have for a.e.
v # R3,

[ f (v, t)& g(v, t)]+

=[ f (v, r)& g(v, r)]++|
t

r
d{ ||

R3_S2
B(v&v

*
, |)

_{[ f (v$, {) f (v$
*

, {)& g(v$, {) g(v$
*

, {)]

&[ f (v, {) f (v
*

, {)& g(v, {) g(v
*

, {)]= /[ f (v, {)>g(v, {)] d| dv
*

(5.8)

Next, by the nonnegativity of f and g, it is easily shown that (ref. 14)

[( f $f $
*

& g$g$
*

)&( f f
*

& gg
*

)]/[ f >g]

�( f $f $
*

& g$g$
*

)+&( f f
*

& gg
*

)++ f | g
*

& f
*

| (5.9)

Since ( f f
*

& gg
*

)+� ff
*

, and the solution f satisfies the moment estimate
(4.5) (choose s=2+;) which implies that for t�r(>0)

|
t

r
d{ |||

R3_R 3_S 2
B(v&v

*
, |) ff

*
(1+|v| 2) d| dv dv

*

=A0 |
t

r
d{ |||

R3_R 3_S 2
f (v, {) f (v

*
, {)(1+|v|2) |v&v

*
| ; dv dv

*

�A0 |
t

r
& f ( } , {)&L 1

2+;
& f ( } , {)&L 1

;
d{

�A0(& f0&L 1
2
)2 |

t

r

b
1&exp(&a{)

d{<�
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it follows from |v$|2+|v$
*

| 2=|v|2+|v
*

|2 that

|
t

r
d{ |||

R 3_R3_S 2
B(v&v

*
, |)( f $f $

*
& g$g$

*
)+ (1+|v|2) d| dv dv

*

=|
t

r
d{ |||

R 3_R 3_S2
B(v&v

*
, |)( f f

*
& gg

*
)+ (1+|v|2) d| dv dv

*
<�

Therefore by (5.8) and (5.9),

&[ f ( } , t)& g( } , t)]+&L1
2

�&[ f ( } , r)& g( } , r)]+&L 1
2

+|
t

r
d{ |||

R 3_R 3_S 2
B(v&v

*
, |) f | g

*
& f

*
|(1+|v|2) d| dv dv

*

�&[ f ( } , r)& g( } , r)]+&L 1
2
+A0 |

t

r
& f ( } , {)&L 1

2+;
&g( } , {)& f ( } , {)&L 1

;
d{

�&[ f ( } , r)& g( } , r)]+&L 1
2
+C |

t

r
(1&e&a{)&1 U1({) d{, t�r

This estimate together with (5.7) gives (5.4). In (5.4), choose r=1. Then,
since U1( } )�U2( } ), it follows from Gronwall inequality that

U2(t)�U2(1) ec(t&1), t�1 (5.10)

Now let r>0 satisfy U2(0)�r�1, and let U *(r)=sup0�t�r U2(t). Then
using (5.4), (5.6) and Fubini theorem we have

U2(t)�U2(r)+C |
t

r

1
{

U1({) d{

�U2(r)+CU1(0) |log r|+C |
t

r

1
{ |

{

0
U2(_) d_ d{

�U *(r)+Cr |log r|+C |
t

0
U2(_) |log _| d_, t # [r, 1] (5.11)
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Since U2(t) also holds the last inequality in (5.11) for t # [0, r], it follows
from Gronwall inequality that

U2(t)�[U*(r)+Cr |log r|] eC, t # [0, 1] (5.12)

For U*(r), we have, by (5.5) and (5.6),

U*(r)�U2(0)+
4

- r _U1(0)+C |
r

0
U2({) d{&+29f (r)�C[r+- r+9f (r)].

(5.13)

Therefore, combining (5.13), (5.12), (5.10) with (5.3) we obtain

U2(t)�C[r+- r +9f (r)] ect, t�0, r>0, r�U2(0)

This gives the estimate (5.2) by taking r=U2(0) for U2(0)>0 and by let-
ting r � 0+ for U2(0)=0, respectively. The proof is completed. K

Since the local stability implies the uniqueness, we obtain the following

Corollary of Theorem 2. Under the condition in Theorem 2 (i.e.,
the kernel B satisfy (1.3) and (1.5) with 0<;�1), the moment estimate
(4.5) holds for all conservative solutions f of (1.1) provided that their initial
data f0 satisfy (1.6).

6. PROOF OF THEOREM 3

Let us define

M( f0)=M( f )(0),

M( f )(t)=|
R 3

f (v, t)(1+|v|2) log(1+|v|2) dv, t # [0, �)

Since (1+|v|2) log(1+|v|2)�10(1+|v|2 log+ |v| ) and f0 # L1
2(R3), the

integrability (2.6) is equivalent to M( f0)<�. We first prove that (2.6)
implies (2.7). For every integer n�1, let f n

0(v)= f0(v) exp(&(1�n) |v|2), and
let f n be the unique conservative solution with the initial datum f n

0 . Then,
by Elmroth's result (ref. 10) (or using (4.15)), for any s1>4, f n belong
to L�([0, �); L1

s1
(R3)) & C 1([0, �); L1(R3)) for all n�1. Applying the

integral form (1.8) of the equation (1.1) and Lemma 4 we have with
,(v)=(1+|v| 2) log(1+|v|2),
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M( f n)(t)=M( f n
0)+

1
2 |

t

0
d{ |||

R3_R3_S 2
B(v&v

*
, |)

_ f n f n

*
(,$+,$

*
&,&,

*
) d| dv

*
dv

�M( f n
0)+A0 |

t

0
(& f n( } , {)&L 1

1+;
)2 d{

&
1
8

A2 |
t

0
d{ |

R 3
f n(v, {)(1+|v|2)

__|R 3
f n(v

*
, {) |v&v

*
| ; dv

* & dv, t # [0, �) (6.1)

where A0 and A2 are the positive constants defined in (4.1) and (4.2). Since
f n are conservative solutions, the lower bound (4.4) gives

|
R 3

f n(v
*

, {) |v&v
*

| ; dv
*

�C;(& f n
0&L1

0
, & f n

0&L 1
2
, H( f n

0))(1+|v|2) ;�2, v # R3 (6.2)

If we define

CB( f0)= 1
8A2 } C;(& f0&L 1

0
, & f0&L 1

2
, H( f0))

then by (6.1), (6.2) and f n
0� f0 we obtain

|
t

0
& f n( } , {)&L 1

2+;
d{�

1
CB( f n

0)
(M( f0)+A0(& f0&L 1

2
)2 t), t # [0, �)

(6.3)

On the other hand, since limn � � & f n
0& f0&L 1

2
=0, it follows from Theorem 2

that

lim
n � �

sup
t # [0, T ]

& f n( } , t)& f ( } , t)&L 1
2
=0 for all T>0

Also, by the continuity and positivity of the function C;(x, y, z) (see (4.3))
we have

lim
n � �

CB( f n
0)=CB( f0)>0
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Therefore by (6.3) and Fatou's Lemma, we obtain a weak moment produc-
tion:

|
t

0
& f ( } , {)&L 1

2+;
d{�

1
CB( f0)

(M( f0)+A0(& f0&L 1
2
)2 t)<�, t # [0, �)

This proves (2.7). Next, we prove that (2.7) implies (2.6). Suppose that
f satisfy (2.7). Since f is a conservative solution, it follows from corollary
of Theorem 2 that for any n�1, f belongs to L�([1�n, �); L1

4(R3))
i.e., _Cn<�, such that & f ( } , t)&L 1

4
=�R3 f (v, t)(1+|v| 2)2 dv�Cn , \t�1�n.

This implies that M( f )(1�n)<� (n=1, 2,...) and therefore as above using
Lemma 4 (with ,=(1+|v|2) log(1+|v|2)),

M( f )(1)=M( f ) \1
n++

1
2 |

1

1�n
dt |||

R 3_R 3_S2
B(v&v

*
, |)

_ ff
*

(,$+,$
*

&,&,
*

) d| dv
*

dv

�M( f ) \1
n+&

1
2 |

1

1�n
dt |||

R 3_R 3_S2
B(v&v

*
, |)

_ ff
*

(2+|v|2+|v
*

|2) d| dv
*

dv

Thus

M( f ) \1
n+�M( f )(1)+A0 |

1

1�n
dt ||

R 3_R 3
f (v, t)

_ f (v
*

, t)(1+|v|2) |v&v
*

| ; dv
*

dv

�M( f )(1)+A0 & f0&L 1
2 |

1

0
dt |

R3
f (v, t)(1+|v| 2) (2+;)�2 dv (6.4)

Since limn � � f (v, 1�n)= f0(v) a.e. v # R3, (6.4) together with Fatou's
Lemma imply M( f0)�lim infn � � M( f )(1�n)<�. This proves (2.6). K
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